
Micromega Corporation 1 R20040810

Using the uM-FPU Integrated
Development Environment

Introduction

The integrated development environment for the uM-FPU provides an easy-to-use tool for developing
applications using the uM-FPU floating point coprocessor and also facilitates the use of the advanced
features of the chip. It provides an expression compiler that generates code for various target platforms, a
debugger to support development and testing of uM-FPU code, and a function programmer that allows the
user to store functions on the uM-FPU, which can greatly reduce memory usage on the microcontroller and
significantly increase speed of operation.

The three main modes of operation are each represented by a separate window in the application. There are
three tabs located at the top left of the window. Clicking on one of these tabs will display the Compiler,
Debugger, or Functions window (see figure below).

Each of these main windows is described in detail below.

Compiler

Micromega Corporation 2 Using the uM-FPU IDE

Compiler

The expression compiler allows the user to specify expressions in common math notation (e.g. x =
cos(theta) * length). The compiler will automatically generate the necessary uM-FPU code for the selected
target platform. Support is currently provided for uM-FPU Opcodes, Basic Stamp, Javelin Stamp, and
PICAXE. More targets will be added as other microcontrollers are supported.

The figure below shows an example of the Compile window.

To use the compiler, the user enters expressions in the Input field, selects the desired target from the
 pop-up menu and presses the button. The compiled code is

generated and displayed in the Output field. The compiler output can be easily copy-and-pasted to the
user’s main program in the microcontroller development environment. The Open… menu item in the File
menu can be used to open files in the Input field and the Save and Save As… menu items can be used to
save files. If an error occurs during compile, an error message is displayed and the location of the error is
be highlighted.

Expressions
Expression can contain uM-FPU registers, microcontroller variables, constants, math operators, math
functions and parentheses. Expressions evaluate left to right with no operator precedence. Type conversion
between the left and right sides is handled automatically.

The following register definitions are built-in:
F0 … F15 specifies that register 0 to 15 contains a floating point value
L0 … L15 specifies that register 0 to 15 contains a long integer value

Compiler

Micromega Corporation 3 Using the uM-FPU IDE

U0 … U15 specifies that register 0 to 15 contains an unsigned long integer value

The following constants are built-in:
PI constant value for pi (3.1515926)
E constant value for e (2.7182818)

The following math functions are built-in:
SQRT, LOG, LOG10, EXP, EXP10, SIN, COS, TAN, FLOOR, CEIL, ROUND,
NEGATE, ABS, INV, DEGREES, RADIANS, FLOAT, FIX, COMPARE, STATUS,
POWER, ROOT, MIN, MAX, FRAC, ASIN, ACOS, ATAN, ATAN2, LCOMPARE,
ULCOMPARE, LSTATUS, LNEGATE, LABS

For example, the expression
F1 = F2 + F3 * F4

would generate the following code depending on the selected target:

uM-FPU
Opcodes
SELECTA R1
SET R2
FADD R3
FMUL R4

BASIC Stamp
fA = 1
fB = 2
GOSUB Fset
fB = 3
GOSUB Fadd
fB = 4
GOSUB Fmultiply

Javelin Stamp
f1.set(f2)
f1.add(f3)
f1.multiply(f4)

PICAXE
reg = 1
opcode = SELECTA
gosub fpu_command
reg = 2
opcode = SET
gosub fpu_command
reg = 3
opcode = FADD
gosub fpu_command
reg = 4
opcode = FMUL
gosub fpu_command

The expression
F1 = 2 * F2 + 5

will generate the following BASIC Stamp code:
fA = 1
fHigh = $4000 (Note: 32-bit floating point value for 2)
fLow = $0000
GOSUB Load_Float
GOSUB Fset
fB = 2
GOSUB Fmultiply
fHigh = $40A0 (Note: 32-bit floating point value for 5)
fLow = $0000
GOSUB Load_Float
GOSUB Fadd

Symbolic Names
Using symbolic names can make expressions easier to read and understand. Symbolic names can be
defined for registers, microcontroller variables, or constants using the EQU operator. Registers are defined
using one of the built-in definitions or using a previously defined definition.
e.g.

Y EQU F1
X EQU F2
Y = 2 * X + 5

Constants
Constants can be defined for use in expressions.
e.g.

Compiler

Micromega Corporation 4 Using the uM-FPU IDE

LENGTH EQU 4.75

Optionally, the CON operator can be used to define constants. The CON operator is equivalent to the EQU
operator but is restricted to constants.
e.g.

LENGTH CON 4.75

The compiler simplifies constant expressions to generate a single constant value. For example, the
expression

Phase2 = Angle * PI / 2

will generate the following BASIC Stamp code:
fA = Phase2
fB = Angle
GOSUB Fset
fHigh = $3FC9 (Note: 32-bit floating point value for PI / 2)
fLow = $0FDA
GOSUB Load_Float
GOSUB Fmultiply

Microcontroller Variables
Microcontroller variables can defined using the EQU operator and one of the following keywords:

BYTE 8-bit signed integer value
UBYTE 8-bit unsigned integer value
WORD 16-bit signed integer value
UWORD 16-bit unsigned integer value
LONG 32-bit signed integer value
ULONG 32-bit unsigned integer value
FLOAT 32-bit floating point value

e.g.
count EQU BYTE
sensorInput EQU UWORD
lastAngle EQU FLOAT

When a microcontroller variables is used in an expression the uM-FPU compiler generates the necessary
code to transfer the value between the microcontroller and the uM-FPU.
e.g.

degreesC EQU BYTE
degreesF EQU F1
degreesF = (degreesC * 9 / 5) + 32

fA = degreesF (degrees Fahrenheit will be stored in register 1)
GOSUB Left
fLow.LOWBYTE = degreesC (degrees centigrade loaded from microcontroller)
GOSUB Load_FloatByte
GOSUB Fset
fHigh = $3FE6 (multiply by 9 / 5)
fLow = $6666
GOSUB Load_Float
GOSUB Fmultiply
GOSUB Right
GOSUB Fset
fHigh = $4200 (add 32)
fLow = $0000
GOSUB Load_Float
GOSUB Fadd

Compiler

Micromega Corporation 5 Using the uM-FPU IDE

Optionally, the VAR operator can be used to define microcontroller variables. The VAR operator is
equivalent to the EQU operator but is restricted to variables.
e.g.

count VAR BYTE

Comments
Comments can be added to the end of a line by entering either an apostrophe (') or double slash (//).

Order of Evaluation
Expressions are evaluated from left to right with no operator precedence, but constant expressions are first
reduced to single constant values. In some cases it may be necessary to use parenthesis to get the desired
result. For example, F1 = F2 * 2 + 5 is evaluated as F1 = F2 * 7 because the constant
expression 2 + 5 is evaluated first. If the desired result is to first multiply F2 by 2 then add 5, you would
need to break up the constant expression by writing F1 = 2 * F2 + 5 or by using parentheses.
e.g.

F1 = (F2 * 2) + 5.

Parenthesis can also be used in other situations where the order of evaluation needs to be changed. There
can be up to five levels of parenthesis used. One level is automatically used if the value on the left side of
the equation is also used on the right side of the equation other than as the first operand. For example, the
expression

X = Y – X

requires a temporary value and will generate the following BASIC Stamp:
fA = X
GOSUB Left
fB = Y
GOSUB Fset
fB = X
GOSUB Fsubtract
GOSUB Right
GOSUB Fset

Whereas the expression
X = X – Y

which doesn’t need a temporary value will generate the following BASIC Stamp code:
fA = X
fB = Y
GOSUB Fsubtract

Functions
Stored functions are specified using the #FUNCTION directive. After a #FUNCTION directive is
encountered, all compiled code is targeted for the uM-FPU and is directed to the appropriate function
defined in the Functions window. This continues until another #FUNCTION directive is encountered, an
#END directive is encountered, or the end of input is reached. The #FUNCTION directive can optionally
include a function name that can be used in the remainder of the file.
e.g.

#FUNCTION functionNumber [functionName]

where:
functionNumber is a value between 0 and 63
functionName is a symbol name associated with this function

A function call is specified by using the @ character followed by a constant value 0 to 63 representing the
function to call.

Compiler

Micromega Corporation 6 Using the uM-FPU IDE

e.g.
@functionNumber

where:
functionNumber is a value between 0 and 63

An example of a function definition and call is as follows:

Value1 EQU BYTE
Value2 EQU BYTE
X EQU F1
Y EQU F2
Z EQU F3

#FUNCTION 0 Hypotenuse
Z = SQRT(X*X + Y*Y)
#END

X = Value1
Y = Value2
@Hypotenuse

If a function is called from inside another function, execution will not return to the original function (i.e. it
is a GOTO not a GOSUB). This can still be useful to chain together functions. For example, if you were
updating the position of a robotic arm, you could chain through relative offsets of each joint to get the
cumulative offset.
e.g.

#FUNCTION 1 AddShoulder
X = X + ShoulderX
Y = Y + ShoulderY
Z = Z + ShoulderZ

#FUNCTION 2 AddElbow
X = X + ElbowX
Y = Y + ElbowY
Z = Z + ElbowZ
@AddShoulder

#FUNCTION 3 AddWrist
X = X + WristX
Y = Y + WristY
Z = Z + WristZ
@AddElbow
#END

The checkbox will clear the function list before compiling. If the box is not checked and a
#FUNCTION directive is encountered that defines a function that is already defined in the function list an
error message will be displayed.

Debugger

Micromega Corporation 7 Using the uM-FPU IDE

Debugger

The debugger provides extensive support for debugging programs that use the uM-FPU floating point
coprocessor. Utilizing the built-in uM-FPU debug commands, the IDE provides a high-level interface for
debugging. It supports the display of the uM-FPU register values in various formats, the ability to use
breakpoints, single step execution of uM-FPU instructions, and the ability to trace uM-FPU instructions.
The IDE includes a disassembler so that instruction traces are displayed in easy-to-read assembler format.

Connecting the Debugger
The built-in debugger operates through a serial connection using the TSTIN and TSTOUT pins of the uM-
FPU. The connection to a standard PC serial port is shown in the figure below. The serial connection must
be configured as 57,600 baud, 8 bits, no parity, one stop bit.

Debugger

Micromega Corporation 8 Using the uM-FPU IDE

Debug Window
The figure below shows an example of the Debug window.

The Go/Stop/Step/Trace buttons at the top left of the debugger window control the break and trace
features. The scrolling window on the left of the window displays trace messages. The panel on the right
displays the contents of the uM-FPU registers. Connection status is displayed at the lower left of the IDE
window. If the port needs to be changed use the Select Port… menu item in the Debug menu.

Trace Messages
Trace messages are displayed in a scrolling window on the left of the debug window. When a reset occurs
a message is displayed showing the date and time of the reset.
e.g.

--
RESET: 2004-08-07 13:19:31
--

If a breakpoint occurs, the last uM-FPU instruction executed before the breakpoint is displayed, followed
by the BREAK message.
e.g.

 05 SELECTA R5
 F43C LOADBYTE 60
BREAK

If tracing is enabled, all uM-FPU instructions are displayed as they are executed.
e.g.

TRACE: ON

Debugger

Micromega Corporation 9 Using the uM-FPU IDE

 0A SELECTA R10
 F55A LOADUBYTE 90
 50 SET R0
 EF TORADIANS
 303FC90FDB WRITEB R0: 0x3FC90FDB
 0C SELECTA R12
 50 SET R0
 … …

See Appendix A for a uM-FPU opcode summary.

Breakpoint and Trace Buttons
Breakpoints and tracing are controlled with the following buttons:

The Go/Stop/Step buttons are enabled or disabled depending on the current state of execution. The Go
button is enabled after a breakpoint and is used to continue execution. The Stop button is used to cause a
breakpoint after the next uM-FPU instruction is executed. If the uM-FPU is idle when the Stop button is
pressed the breakpoint will not occur until the next uM-FPU instruction is executed. If the uM-FPU is
already at a breakpoint, then the Stop button will be disabled. The Step button is used to single step
through the instructions, a new breakpoint occurs after each instruction. (Note: The SELECTA and
SELECTB opcodes will not cause a breakpoint because these opcodes do not require a busy/wait check
before issuing the next opcode.)
Pressing the button will clear the contents of the trace window.

Register Panel
The register panel indicates the currently selected A and B registers by displaying an A and B marker in the
left margin of the register panel. For each register, the register number, optional register name,
hexadecimal value is displayed. The floating point value, long integer value or unsigned long integer value
is also displayed depending on the selected display format. Clicking the small triangle on the right
displays a pop-up menu that is used to select the display format or name of the register (if names have been
assigned).
e.g.

The current register values are automatically updated after every breakpoint. The button
can be used to manually force an update of the register values. If a register value has changed since the last
time it was displayed it is displayed in red. If the value is unchanged it is displayed in black.

Register Names
Register names are automatically set by any register definitions that are compiled, but they can also be
specified manually by pressing the button. The following dialog is displayed:

Debugger

Micromega Corporation 10 Using the uM-FPU IDE

New register names are defined by selected the register from the Register pop-up menu at the bottom of the
dialog, entering the name in the Name field, selecting the display type from the Type pop-up menu and
pressing the button. A definition can be changed by selected a definition in the scrolling list,
making the changes using the Register pop-up, Name field and Type pop-up, and pressing the
button. A definition can be deleted by selecting the definition in the scrolling list and pressing the

 button. All names can be cleared by pressing the button. Register names can be
loaded from a file by pressing the button and saved to a file by pressing the
button. The checkbox at the left of the list can be used to enable or disable register definitions. This can be
useful when debugging programs that have multiple definitions for the same register.

Debugger

Micromega Corporation 11 Using the uM-FPU IDE

Debug Menu

The Select Port… menu item is used to select the serial communications port. The following dialog will
be displayed.

The Go, Stop, and Step menu items have the same function as the Go, Stop and Step buttons.

The Turn Trace On / Turn Trace Off menu item has the same function as the Trace button.

The Trace on Reset menu item will automatically enable tracing after a reset.

The Break on Reset menu item will automatically cause a breakpoint after reset.

Note: The Trace on Reset and Break on Reset features work by watching for a reset and sending
commands sent to the built-in debugger. In some cases, after a reset, the program may have time to
execute some uM-FPU instructions before the debug command is received. If it is necessary to see all of
the instructions after a reset then a TRACEBRK or TRACEON instruction should be inserted into the code.

The Read Registers menu item has the same function as the Read Registers button.

The Read Version menu item will display the version of the uM-FPU in the trace window.

The Read Checksum menu item will display the checksum of the uM-FPU in the trace window.

Functions

Micromega Corporation 12 Using the uM-FPU IDE

Functions

The Functions window provides support for storing functions on the uM-FPU. This can greatly reduce
memory usage on the microcontroller and significantly increase speed of operation. The uM-FPU reserves
1024 bytes of flash memory for storing up to 64 functions. Functions are stored as a string of uM-FPU
instructions. Functions can be entered or modified directly in the function window if desired, but the most
effective way to define functions is to use the #FUNCTION directive in the Compiler.

The figure below shows an example of the Function window.

The status message at the top left of the window shows the percentage of function memory currently used
on the uM-FPU, and the number of bytes available. The scrolling list on the left shows all of the currently
defined functions. For each function, the name of the function and its size in bytes is displayed. Functions
are selected by clicking on an item in the list. The center field shows the instructions for the currently
selected function.

Pressing the button checks the syntax of the currently selected function. If an error is detected,
a message will be displayed and the location of the error will be highlighted. Syntax is automatically
checked before selected a new function or programming the function.

To delete a function from the function list, select the function in the list and press the button.
Pressing the button deletes all functions from the function list.

Functions

Micromega Corporation 13 Using the uM-FPU IDE

Pressing the button reads the currently stored function from the uM-FPU and stores
them in the function list.

Pressing the button programs the uM-FPU with all of the functions in the function
list. If a function is currently stored on the uM-FPU and no new definition is specified in the function list,
the currently stored function will be retained.

Pressing the button will clear all of the stored functions on the uM-FPU.

Contact Information

See the Micromega Corporation website at: http://www.micromegacorp.com/

Functions

Micromega Corporation 14 Using the uM-FPU IDE

Appendix A
uM-FPU Opcode Summary

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

SELECTA 0x Select A register
SELECTB 1x x Select B register
WRITEA Either 2x yyyy zzzz Write register and select A
WRITEB Either 3x yyyy zzzz x Write register and select B
READ Either 4x yyyy zzzz Read register
SET Either 5x A = B
FADD Float 6x x A = A + B
FSUB Float 7x x A = A - B
FMUL Float 8x x A = A * B
FDIV Float 9x x A = A / B
LADD Long Ax x A = A + B
LSUB Long Bx x A = A -B
LMUL Long Cx x A = A * B
LDIV Long Dx x A = A / B
SQRT Float E0 A = sqrt(A)
LOG Float E1 A = ln(A)
LOG10 Float E2 A = log(A)
EXP Float E3 A = e ** A
EXP10 Float E4 A = 10 ** A
SIN Float E5 A = sin(A) radians
COS Float E6 A = cos(A) radians
TAN Float E7 A = tan(A) radians
FLOOR Float E8 A = nearest integer <= A
CEIL Float E9 A = nearest integer >= A
ROUND Float EA A = nearest integer to A
NEGATE Float EB A = -A
ABS Float EC A = |A|
INVERSE Float ED A = 1 / A

DEGREES Float EE Convert radians to degrees
A = A / (PI / 180)

RADIANS Float EF Convert degrees to radians
A = A * (PI / 180)

SYNC F0 5C Synchronization

FLOAT Long F1 0 Copy A to Register 0
Convert long to float

FIX Float F2 0 Copy A to Register 0
Convert float to long

FCOMPARE Float F3 ss Compare A and B
(floating point)

LOADBYTE Float F4 bb 0 Write signed byte to Register 0

Functions

Micromega Corporation 15 Using the uM-FPU IDE

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

Convert to float

LOADUBYTE Float F5 bb 0 Write unsigned byte to Register 0
Convert to float

LOADWORD Float F6 wwww 0 Write signed word to Register 0
Convert to float

LOADUWORD Float F7 wwww 0 Write unsigned word to Register 0
Convert to float

READSTR F8 aa … 00 Read zero terminated string from
string buffer

ATOF Float F9 aa … 00 0 Convert ASCII to float
Store in A

FTOA Float FA ff Convert float to ASCII
Store in string buffer

ATOL Long FB aa … 00 0 Convert ASCII to long
Store in A

LTOA Long FC ff Convert long to ASCII
Store in string buffer

FSTATUS Float FD ss Get floating point status of A
FUNCTION FE0n User functions 0-15
FUNCTION FE1n User functions 16-31
FUNCTION FE2n User functions 32-47
FUNCTION FE3n User functions 48-63
LWRITEA Long FEAx yyyy zzzz Write register and select A
LWRITEB Long FEBx yyyy zzzz 0 Write register and select B
LREAD Long FECx yyyy zzzz Read register
LUDIV Long FEDx 0 A = A / B (unsigned long)
POWER Float FEE0 A = A ** B
ROOT Float FEE1 A = the Bth root of A
MIN Float FEE2 A = minimum of A and B
MAX Float FEE3 A = maximum of A and B

FRACTION Float FEE4 0 Load Register 0 with the
fractional part of A

ASIN Float FEE5 A = asin(A) radians
ACOS Float FEE6 A = acos(A) radians
ATAN Float FEE7 A = atan(A) radians
ATAN2 Float FEE8 A = atan(A/B)

LCOMPARE Long FEE9 ss Compare A and B
(signed long integer)

LUCOMPARE Long FEEA ss Compare A and B
(unsigned long integer)

LSTATUS Long FEEB ss Get long status of A
LNEGATE Long FEEC A = -A
LABS Long FEED A = |A|
LEFT FEEE Right parenthesis
RIGHT FEEF 0 Left parenthesis
LOADZERO Either FEF0 0 Load Register 0 with zero

Functions

Micromega Corporation 16 Using the uM-FPU IDE

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

LOADONE Float FEF1 0 Load Register 0 with 1.0
LOADE Float FEF2 0 Load Register 0 with e
LOADPI Float FEF3 0 Load Register 0with pi

LONGBYTE Long FEF4 bb 0 Write signed byte to Register 0
Convert to long

LONGUBYTE Long FEF5 bb 0 Write unsigned byte to Register 0
Convert to long

LONGWORD Long FEF6 wwww 0 Write signed word to Register 0
Convert to long

LONGUWORD Long FEF7 wwww 0 Write unsigned word to Register 0
Convert to long

IEEEMODE FEF8 Set IEEE mode (default)
PICMODE FEF9 Set PIC mode
BREAK FEFB Debug breakpoint
TRACEOFF FEFC Turn debug trace off
TRACEON FEFD Turn debug trace on
TRACESTR FEFE Send debug string to trace buffer
CHECKSUM FEFF 0 Calculate code checksum

VERSION FF Copy version string to string
buffer

Notes:
Data Type data type required by opcode
Opcode hexadecimal opcode value
Aruments additional data required by opcode
Returns data returned by opcode
B Reg value of B register after opcode executes
x register number (0-15)
n function number (0-63)
yyyy most significant 16 bits of 32-bit value
zzzz least significant 16 bits of 32-bit value
ss status byte
bb 8-bit value
wwww 16-bit value
aa … 00 zero terminated ASCII string

